该文章转自:
我们谈一下实际的场景吧。我们在开发中,有如下场景
a) 关闭空闲连接。服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之。b) 缓存。缓存中的对象,超过了空闲时间,需要从缓存中移出。c) 任务超时处理。在网络协议滑动窗口请求应答式交互时,处理超时未响应的请求。一种笨笨的办法就是,使用一个后台线程,遍历所有对象,挨个检查。这种笨笨的办法简单好用,但是对象数量过多时,可能存在性能问题,检查间隔时间不好设置,间隔时间过大,影响精确度,多小则存在效率问题。而且做不到按超时的时间顺序处理。 这场景,使用DelayQueue最适合了。DelayQueue是java.util.concurrent中提供的一个很有意思的类。很巧妙,非常棒!但是java doc和Java SE 5.0的source中都没有提供Sample。我最初在阅读ScheduledThreadPoolExecutor源码时,发现DelayQueue的妙用。随后在实际工作中,应用在session超时管理,网络应答通讯协议的请求超时处理。本文将会对DelayQueue做一个介绍,然后列举应用场景。并且提供一个Delayed接口的实现和Sample代码。DelayQueue是一个BlockingQueue,其特化的参数是Delayed。(不了解BlockingQueue的同学,先去了解BlockingQueue再看本文)Delayed扩展了Comparable接口,比较的基准为延时的时间值,Delayed接口的实现类getDelay的返回值应为固定值(final)。DelayQueue内部是使用PriorityQueue实现的。DelayQueue = BlockingQueue + PriorityQueue + DelayedDelayQueue的关键元素BlockingQueue、PriorityQueue、Delayed。可以这么说,DelayQueue是一个使用优先队列(PriorityQueue)实现的BlockingQueue,优先队列的比较基准值是时间。他们的基本定义如下public interface Comparable{ public int compareTo(T o);}
public interface Delayed extends Comparable{ long getDelay(TimeUnit unit);}
public class DelayQueueimplements BlockingQueue { private final PriorityQueue q = new PriorityQueue ();}
DelayQueue内部的实现使用了一个优先队列。当调用DelayQueue的offer方法时,把Delayed对象加入到优先队列q中。如下:
1 public boolean offer(E e) { 2 final ReentrantLock lock = this.lock; 3 lock.lock(); 4 try { 5 E first = q.peek(); 6 q.offer(e); 7 if (first == null || e.compareTo(first) < 0) 8 available.signalAll(); 9 return true;10 } finally {11 lock.unlock();12 }13 }
DelayQueue的take方法,把优先队列q的first拿出来(peek),如果没有达到延时阀值,则进行await处理。如下:
1 public E take() throws InterruptedException { 2 final ReentrantLock lock = this.lock; 3 lock.lockInterruptibly(); 4 try { 5 for (;;) { 6 E first = q.peek(); 7 if (first == null) { 8 available.await(); 9 } else {10 long delay = first.getDelay(TimeUnit.NANOSECONDS);11 if (delay > 0) {12 long tl = available.awaitNanos(delay);13 } else {14 E x = q.poll();15 assert x != null;16 if (q.size() != 0)17 available.signalAll(); // wake up other takers18 return x;19 20 }21 }22 }23 } finally {24 lock.unlock();25 }26 }
以下是Sample,是一个缓存的简单实现。共包括三个类Pair、DelayItem、Cache。如下:
1 public class Pair{ 2 public K first; 3 4 public V second; 5 6 public Pair() {} 7 8 public Pair(K first, V second) { 9 this.first = first;10 this.second = second;11 }12 }
以下是Delayed的实现
1 import java.util.concurrent.Delayed; 2 import java.util.concurrent.TimeUnit; 3 import java.util.concurrent.atomic.AtomicLong; 4 5 public class DelayItemimplements Delayed { 6 /** Base of nanosecond timings, to avoid wrapping */ 7 private static final long NANO_ORIGIN = System.nanoTime(); 8 9 /**10 * Returns nanosecond time offset by origin11 */12 final static long now() {13 return System.nanoTime() - NANO_ORIGIN;14 }15 16 /**17 * Sequence number to break scheduling ties, and in turn to guarantee FIFO order among tied18 * entries.19 */20 private static final AtomicLong sequencer = new AtomicLong(0);21 22 /** Sequence number to break ties FIFO */23 private final long sequenceNumber;24 25 /** The time the task is enabled to execute in nanoTime units */26 private final long time;27 28 private final T item;29 30 public DelayItem(T submit, long timeout) {31 this.time = now() + timeout;32 this.item = submit;33 this.sequenceNumber = sequencer.getAndIncrement();34 }35 36 public T getItem() {37 return this.item;38 }39 40 public long getDelay(TimeUnit unit) {41 long d = unit.convert(time - now(), TimeUnit.NANOSECONDS);42 return d;43 }44 45 public int compareTo(Delayed other) {46 if (other == this) // compare zero ONLY if same object47 return 0;48 if (other instanceof DelayItem) {49 DelayItem x = (DelayItem) other;50 long diff = time - x.time;51 if (diff < 0)52 return -1;53 else if (diff > 0)54 return 1;55 else if (sequenceNumber < x.sequenceNumber)56 return -1;57 else58 return 1;59 }60 long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS));61 return (d == 0) ? 0 : ((d < 0) ? -1 : 1);62 }63 }
以下是Cache的实现,包括了put和get方法,还包括了可执行的main函数。
1 import java.util.concurrent.ConcurrentHashMap; 2 import java.util.concurrent.ConcurrentMap; 3 import java.util.concurrent.DelayQueue; 4 import java.util.concurrent.TimeUnit; 5 import java.util.logging.Level; 6 import java.util.logging.Logger; 7 8 public class Cache{ 9 private static final Logger LOG = Logger.getLogger(Cache.class.getName());10 11 private ConcurrentMap cacheObjMap = new ConcurrentHashMap ();12 13 private DelayQueue >> q = new DelayQueue >>();14 15 private Thread daemonThread;16 17 public Cache() {18 19 Runnable daemonTask = new Runnable() {20 public void run() {21 daemonCheck();22 }23 };24 25 daemonThread = new Thread(daemonTask);26 daemonThread.setDaemon(true);27 daemonThread.setName("Cache Daemon");28 daemonThread.start();29 }30 31 private void daemonCheck() {32 33 if (LOG.isLoggable(Level.INFO))34 LOG.info("cache service started.");35 36 for (;;) {37 try {38 DelayItem > delayItem = q.take();39 if (delayItem != null) {40 // 超时对象处理41 Pair pair = delayItem.getItem();42 cacheObjMap.remove(pair.first, pair.second); // compare and remove43 }44 } catch (InterruptedException e) {45 if (LOG.isLoggable(Level.SEVERE))46 LOG.log(Level.SEVERE, e.getMessage(), e);47 break;48 }49 }50 51 if (LOG.isLoggable(Level.INFO))52 LOG.info("cache service stopped.");53 }54 55 // 添加缓存对象56 public void put(K key, V value, long time, TimeUnit unit) {57 V oldValue = cacheObjMap.put(key, value);58 if (oldValue != null)59 q.remove(key);60 61 long nanoTime = TimeUnit.NANOSECONDS.convert(time, unit);62 q.put(new DelayItem >(new Pair (key, value), nanoTime));63 }64 65 public V get(K key) {66 return cacheObjMap.get(key);67 }68 69 // 测试入口函数70 public static void main(String[] args) throws Exception {71 Cache cache = new Cache ();72 cache.put(1, "aaaa", 3, TimeUnit.SECONDS);73 74 Thread.sleep(1000 * 2);75 {76 String str = cache.get(1);77 System.out.println(str);78 }79 80 Thread.sleep(1000 * 2);81 {82 String str = cache.get(1);83 System.out.println(str);84 }85 }86 }
运行Sample,main函数执行的结果是输出两行,第一行为aaa,第二行为null。